AN EXPERIMENTAL EVALUATION OF THE ASSUMPTION

OF INDEPENDENCE IN MUI'I-VERSION PFOGRAMMING*

John C. Knight Nang G. Leveson
Department of Computer Science Department of Computer Science
University of Virginia University of California
Charlottesville, ginia, 22903 Irvine, California, 92717
(804) 924-7605 (714) 856-5517

ABSTRACT

N-version programming has been proposed as a method of incorpomiihdoferance into softare.
Multiple versions of a program (i.eN’’) are prepared andkecuted in parallel. Their outputs are collected
and &amined by a eter, and, if they are not identical, it is assumed that the majority is corrdttis
method depends for its reliability imp@ment on the assumption that programs thaetmen deeloped
independently will &il independently In this paper anx@eriment is described in which the fundamental
axiom is testedA total of twenty seen versions of a program were prepared independently from the same
specification at te universities and then subjected to one million testhe results of the testsvealed

that the programs were intilually extremely reliable bt that the number of tests in which more than one
program &iled was substantially more tharpected. Theesults of these tests are presented along with an
analysis of some of theadlts that were found in the programB8ackground information on the
programmers used is also summarizethe conclusion from this xperiment is that N-ersion
programming must be used with care and that analysis of its reliability must includeethefdependent
errors.

Keywords and Phrases:
Multi-version programming, Nersion programming, sofeve reliability fault-tolerant softare,
design diersity.

*This work was sponsored in part byASA grant number NG1-242 and in part by a MIGRgrant cofunded by the state of
California and Hughes Aircraft Compan

www.manaraa.com

1. INTRODUCTION

Multi-version or N-ersion programming [1] has been proposed as a method waflipg fault
tolerance in softare. Theapproach requires the separate, independent preparation of multipf&'(ie. '
versions of a piece of soffwe for some applicationThese ersions are xecuted in parallel in the
application ewironment; each recets identical inputs and each produces itysion of the required
outputs. Theoutputs are collected by ater and, in principle, tlyeshould all be the sameln practice
there may be some disagreemelitthis occurs, the results of the majority (assuming there is one) are

assumed to be the correct output, and this is the output used by the system.

Separate delopment can start at dérent points in the softavre de@elopment processSince each
version of the softwre must preide the same functional capabilitiiere mustxést some common form of
system requirements documer@oordination must alsoxest if the \ersions are to pwide data to the
voter, especially if intermediate data is compared as well as the final output @at@ously, al design
specification must be redundant and independent fordistons to hae ay chance of @oiding common
design &ults. Aninteresting approach to dual specificaticaswised by Ramamooythkt al. [2] where two
independent specifications were written in a formal specification language and then formal mathematical
techniques used toevify consisteng between the specifications before thextnstep in deelopment
proceeded. Thuthey were able to detect specificaticawfts by using redundap@nd then repair them
before the separate sofive \ersions were producedKelly and Avizienis [3,4] also used separate
specifications for their Narsion programmingxperiment, It the specifications were all written by the

same person so independen@swyntactic only (three f#frent specification languages were used).

N-version programming isated with seeral practical dificulties in its implementation such as
isolation of the ersions and design ofoting algorithms. These dificulties hae been summarized

comprehensely by Anderson and Lee [5] and will not be discussed here.

www.manaraa.com

The great benefit that Nevsion programming is intended to pide is a substantial impvement in
reliability. It is assumed in the analysis of the technique that the HNerdiit \ersions will il
independently; that is, aults in the diierent \ersions occur at random and are unrelat&tus the
probability of two or more \ersions &iling on the same input isexy small. Under this assumption, the
probability of failure of an N-ersion system, to a first approximation, is proportional to thie pbwver of
the probability of &ilure of the independentisions. Ifthe assumption is true, system reliability could be

higher than the reliability of the inddual components.

We ae concerned that this assumption mightfddee. Our intuition indicates that when solving a
difficult intellectual problem (such as writing a computer program), people tend &tmasame mistas
(for example, incorrect treatment of boundary conditiongnewhen thg are working independently
Some parts of a problem may be inherently morgcdlf than others.In the experiment described in this
paper the subjects were aslt in a questionnaire to state the parts of the problem that caused them the most

difficulty. The responses were surprisingly similar

It is interesting to note thatyen in mechanical systems where redundaiscan important technique
for achieving fault tolerance, commodesign faults are a source of serious problends aircraft crashed
recently because of a common vibration mode thagradly afected all three parts of a triply redundant
system [6]. Common Rilure Mode Analysis is used in critical hame systems in an attempt to

determine and minimize commoailtire modes.

If the assumption of independence is not born out in practice for ardibm softvare system, it
would cause the analysis tovemestimate the reliability Recent vork [7] has shan that e@en small
probabilities of coincident errors cause a substantial reduction in reliabiliig could be an important
practical problem since Nevsion programming is being used kiséing crucial systems and is planned for
others. r instance,dual programming has been used in the slat and flap control system of the Airb

Industrie A310 aircraft [8]. The two programs are »@cuted by diferent microprocessors operating

www.manaraa.com

asynchronously The outputs of the tavmicroprocessors are compared continuguaty ary difference
greater than a defined threshold causes the system to disconnect after a preset tindm dedap310, it

is suficient to knav that there has been ailtire as backup procedures allthe continued safe flight and
landing of the aircraft.Dual programming has also been applied to point switching, signal control, and
traffic control in the Gothenbyg aea by Swedish State Radys [9]. In the latter system, if the tw
programs she different results, signal lights are switched to r&lial programming has further been
proposed for safety systems in nuclear reactdogies, Fetsch, and Gmeiner [10}bBgroposed its use in

the design of a reactor shutdo system which sees the purpose of detecting cooling disturbances in a
fast breeder reactor and initializing automatic shwidof the reactor in case of possible egeery. Also,

both Ramamoorth et al. [2] and Dahll and Lahti[11] he poposed elaborate dual vé#pment

methodologies for the design of nuclear reactor safety systems.

A common agument [2,10,12] indva of dual programming is that testing of safety-critical real-
time software can be simplified by producingawersions of the softare and ®ecuting them on laye
numbers of test cases without manual or independenification of the correct outputThe output is
assumed correct as long as boginsions of the programs agre€he agument is made that preparing test
data and determining correct output isfidiflt and &pensve for much real-time softare. Sinceit is
assumedunlikely” that two programs will contain identicabfilts, alarge number of test cases can be run

in a relatvely short time and with a lge reduction in ébrt required for alidation of test results.

In addition, it has beengued that each inddual version of the softare can hae lower reliability
than would be necessary if only onergion were producedThe higher required softwe reliability is
assumed to be obtained through tlo¢ing proces*s The additional cost incurred in theva®pment of
multiple software \ersions wuld be ofset by a reduction in the cost of thalidation processlt has &en

been suggested [13] that elaborate saferd@elopment emironments and procedures will be unnecessary

www.manaraa.com

and that mail-order softave could be obtained from hobbyist programmers.

The important point to note is that all of the wdoaguments in &va of using redundant
programming hinge on the basic assumption that the probability of common mibdesf (identical
incorrect output gien the same input) isery low for independently deloped softvare. Thereforeit is

important to kna whether this assumption is correct.

Several previous experiments hee invdved N-wersion programming,ut none hae focused on the
issue of independencén two [2,11] independenceas assumed and therefore not testaceach of these,
the two versions deeloped were assumed to be correct if the twtputs from the test cases agreed and no
attempt vas made to erify independently the correctness of the outptlius common errors auld not
necessarily hae heen detected.In other e&periments, common errors were observhut since
independence as not the ypothesis being tested, the design of tkgeeiments mad it impossible to dra
ary statistically alid conclusions.Kelly and Avizienis [3,4] report finding 21 relateddults, one common
fault was found in practical tests of the Halden nuclear reactor project [9], andr T9] reports that

common &ults hae keen found in about half of the practical redundant Europeanasefsystems.

In summary dthough there is some gaive evidence which raises doubts about the independence
assumption, there has been xperiment which attempted to study this assumption in a manner in which
clear idence for or aginst can be dven. Because¢he independence assumption is widely accepted and
because of the potential importance of the issue in terms of ,safethave carried out a laye scale
experiment in N-ersion programming to study this assumptioA. statistically rigorous test of
independence as the major goal of thexgeriment and all of the design decisions that werertakere

dominated by this goal.

*One might note thatven in the hardvare Tiple Modular RedundanydTMR) systems, from which the idea of Mvgion pro-
gramming arises,werall system reliability is not impred if the indvidual components are not thems=hsuficiently reliable [5]. In
fact, incorporating redundanénto a system can actually reducerall system reliability due to the increased number of components
[14].

www.manaraa.com

The «periment and its results are presented in the remainder of this gapsction two we
describe the »@eriment itself, and we veew the backgrounds of the programmers and theivities
during the gperiment in section threeThe results of the tests performed on tlaeious ersions are
presented in section faurSection five contains a model of independence and a statistical test of the
hypothesis that the model iglid. Someof the faults that hee been found in the programs used in this
experiment are described in section six, aadous issues arising from thigperiment are discussed in
section seen. Ourconclusions are presented in section eight, and the requirements specification used in

the experiment is included as an appendix.

2. DESCRIPTION OF EXPERIMENT

In graduate and senionv classes in computer science at thevdrsity of irginia (UVA) and the
University of California at Irvine (UCI), students were adko write programs from a single requirements
specification. Theesult was a total of twenty sen programs (nine from UX and eighteen from UCI) all
of which should produce the same output from the same ifgadh of these programsas/then subjected

to one million randomly-generated test cases.

In order to mak the periment realistic, an attemptas made to choose an application thatihe

normally be a candidate for the inclusion @fult tolerance. The problem that as selected for
programming is a simple @b realistic) anti-missile system that came originally from an aerospace
compan. The program is required to read some data that represents radar reflections and, using a
collection of conditions, has to decide whether the reflections come from an object that is a threat or
otherwise. Ifthe decision is made that the object is a threat, a signal to launch an interceptor has to be
generated. Theroblem is knwn as the ‘launch interceptol’problem and the arious conditions upon

which the decision depends are referred tdlasn’ch interceptor conditiongLIC’s). Theconditions are

heavily parameterized.For example, one condition asks whether a set of reflections can be contained

within-a-circle of gvenradius;the radius is a parameter

-5-

www.manaraa.com

The problem has been used in other saferengineeringxperiments [15].1t has also been used in
a dudy of N-wersion programming with N equal to three thatswcarried out at the Researctiamgle
Institute (R'). We chose this problem because of its suitability and because we were able to use the
lessons learned in theqgeriment at Rl to modify our avn experiment. R had prepared a requirements
specification and hadkperienced some ditulties with un&pected ambiguities and similar problenwe
were able to nerite the requirements specification in the light of thipegience. Thushe requirements

specification had been carefullgébugged’ prior to use in thisxperiment.

The requirements specificatioragvgien to the students and thevere askd to prepare softave to
comply with it. No overall software deelopment methodology &s imposed on theniThey were required
to write the program indcal and to use only a specified compiler and associated operating sistem.
UVA these were the Uwérsity of Hull V-mode Rscal compiler for the Prime computers using PRIMOS,

and at UCI these were the Bellly PC compiler for the WX 11/750 using UNIX.

The students were\gin a krief explanation of the goals of thegeriment and the principles of N-
version programming.The need for independentv@opment vas stressed and students were carefully
instructed not to discuss the project amongst themseltavever, we dd not impose anrestriction on
their reference sourcesince the application requires some \tezlge of geometryit was epected that
the students wuld consult referencexes and perhaps mathematicians in order weldp the necessary
algorithms. V& felt that the possibility of tev gudents using the same reference materésd mo diferent
from two separate aanizations using the same reference sources in a commercidlomtaent

ernvironment.

As would be @&pected during deslopment, questions arose about the meaning of the requirements.
In order to preent ary possibility of information being inadrtently transmitted by an informakrbal
response, theseviequestions were submitted and answered by electronic riiadl.question reealed a

general flav in the specifications, the responsasWbroadcast to all the programmers.

www.manaraa.com

Each student &s supplied with fifteen input data sets and #peeted outputs for use in dejging.
Once a program as delbigged using these tests ang ather tests the student\d#oped, it was subjected
to an acceptance tesfThe acceptance testaw a set of taw hundred randomly-generated test cases; a
different set of tw hundred tests were generated for each progfaifferent data sets were used for each
program to preent a general‘filtering”” of common aults by the use of a common acceptance t&st.
acceptance testag used since itas felt that in a real sofwe production ernronment potential programs
would be submitted toxtensve testing and wuld not be used unless yhdemonstrated a highue of
reliability. Although the data as generated randomlye test case generatoasvwritten for and tailored
to this application.Once a program passed its acceptance tesasittansidered complete andswentered
into the collection of ersions. Theacceptance test thatw used represents a realistic amountbéiation
for this type of softwre as is discussed in sectiowese and resulted in highly reliable programs as is

showvn belaw.

One result of the earliexxperiment at Rl was some difculty with machine precision dérences
between ersions. Althoughwo programs computed what amounted to the same restiétatif orders of
computation yielded minor dérences which @&vethe impression that one or morersions haddiled. T
prevent this, all programmers in thixgeriment were supplied with a function to perform comparison of
real quantities with limited precisiohe programmers were instructed to use this supplied function for all

real-number comparisons.

Once all the ®rsions had passed their acceptance tests, é¢hgons were subjected to the
experimental treatment which consisted of simulation of a producticinoement. Atest drver was luilt
which generated random radar reflections and randmoey for all the parameters in the probleil
twenty seen programs werea@cuted on these test cases, and the determination of suaessade by
comparing their output with a twenty-eightbrsion, referred to as thgeld program. Thigprogram vas
originally written in FOR'RAN for the Rl experiment and was revritten in Rascal for this xperiment. As

part of the I experiment, the gold program has been subjectedvimademillion test cases and wevea

www.manaraa.com

considerable confidence in its accyradt was also subjected to amtensve dructured valkthrough at

UVA after translation to &scal.

A gold version vas used so that a ¢gr number of test cases could beceited than wuld be
possible if manual checking of the outputasiyperformed Naturally it is possible (lt very unlikely) that
a coommon undetectediilt existed in all 28 ersions, including the goldeysion. Thisvould hare o efect
on our final results, eever, and ary additional undetected commouits would only strengthen our

conclusion.

A total of one million tests were run on the twentyeseversions written for thisx@eriment and the
gold program.Although testing s not continuous on wrof the machines, a total of fifteen computers
were used in performing these tests between May and September of 1®8infas and a dual processor
CDC Cyber 730 at UN, and seen VAX 11/750's and two CDC Cyber 173 & NASA Langley Research

Center

3. PROGRAMMER’S BACKGROUNDS

During this &periment, the programmers were edko maintain simple avk logs, and to fill in
guestionnaires about their backgrounds this section we ge general information about the
programmers’ pndous eperience, education, andfat level obtained from the logs and questionnaires.
This data is praded in summary form onlyWe choose deliberately not to associate specific background
information with the indiidual versions in order to protect the identity of the programmeé&bss section is
based on twenty six questionnairéBhe questionnaire from one programmer could not be obtained for

analysis.

Fourteen of the programmers wer@nking on bachelors deees and had no prior glee, eight on

masters dgrees and held at least a bachelorgrele and four on doctoral glees and held at least a

www.manaraa.com

masters dgree. Ofthose who held bachelorsgiees, four were in mathematics, three were in computer
science, and thereas one each in astronopyology, environmental science, management science, and
physics. All of the programmers had &k a number of undgraduate courses in mathematics and
computer scienceMost had takn seeral graduate courses in computer science and some graduate
mathematics coursed’he number of undgraduate courserk hours \aried from six to 45 in computer
science, and from 12 to 45 in mathemati€s®e number of graduate counsk hours \aried from zero to

30 in computer science, and from zero to 19 in mathematics.

The programmers’ pwous work experience in the computer fieléwned from none at all to more
than ten yearsMost programmers had onlyonked for a fev months, usually in some form ofwation

employment.

The programmers were askto rate their kneledge of Rscal as eitheexpert, thorough, fair, or
limited. Of the twenty six, four rated their kmedge as xpert, eighteen as thorough, and fourads fThe
programmers were as# also to estimate the reliability of their programfose who did gveestimates of
0.75, 0.8, 0.85, 0.85, 0.87, 0.9, 0.9, 0.9, 0.95, 0.95, 0.95, 0.97, 0.975, 0.98, 0.98, 0.995, 0.998, 0.998, 0.999,

0.999, and 1.0Most of the programs were more reliable than the programmers estimated.

The efort-level estimates obtained from theowk logs are necessarily approximate since the
programers maintained the logs themsslv Thg were askd to record time spent in reading the
requirements specification, designing and implementing the program, anduggohegpand testing the
program. Theeading time &ried from one to 35 hours with ameeage of 5.4; the design time from four

to 50 hours with anvarage of 15.7; and the dedpging time from four to 70 hours with avesage of 26.6.

www.manaraa.com

4. EXPERIMENTAL RESULTS

For each test casexecuted, each program produces a 15 by 15 Boolean ardaydement Boolean
vector, and a single Boolean launch decision, for a total of 241 restits.program calculates these results
from the simulated radar tracking data amdiaus parameters, all of which are randomly generated for
each test caselhe launch condition is the only true output in this applicatibine other results are really
intermediate although tliemust be produced since the specifications require them as part of the
determination of the launch conditiofor the programs written for thisxperiment, all these results must
be supplied to the dmér program during testing to allo for error detection.We record failure for a
particular ersion on a particular test case if therang discrepang between the 241 results produced by
that \ersion and those produced by the gold program, ordiston causes some form ofception (such as

negdive gjuare root) to be raised duringeeution of that test case.

The quality of the programs written for thigperiment is remarkably highTable 1 shavs the
obsened failure rates of the twenty wan versions. Ofthe twenty seen, no hilures were recorded by six
versions and the remainder were successful on more than 99% of theTwestdy three of the twenty

seven were successful on more than 99.9% of the tests.

Table 2 shavs the number of test cases in which more than erson &iled on the same inputVe

find it surprising that test cases occurred in which eight of the twerely gersions &iled.

Where multiple &ilure occurred on the same input, it is natural to suspect thaililmes$ occurred in
the \ersions supplied by only one of the wansities irvolved. Itmight be agued that students at the same
university have a #milar background and that thisowld tend to cause dependenciéfowever, the eact
opposite has been foundiable 3 shavs a correlation matrix of commomifures between theevsions
supplied by the te universities. For table 3, and for table 1eksions numbered 1 through 9 came from

UVA and ersions numbered 10 through 27 came from UEItable 3 entry at location i, j stiws the

-10-

www.manaraa.com

Table 1 - \érsion Rilure Data

Version Railures Pr(Success) Version Failures Pr(Success)
1 2 0.999998 15 0 1.000000
2 0 1.000000 16 62| 0.999938
3 297 0.997703 17 269 0.999731
4 0 1.000000 18 115 0.999885
5 0 1.000000 19 264 0.999736
6 1149 0.998851 20 936 0.999064
7 71 0.999929 21 92| 0.999908
8 323 0.999677 22 9656 0.990344
9 53 0.999947 23 80| 0.999920

10 0 1.000000 24 260 0.999740
11 554 0.999446 25 97| 0.999903
12 427 0.999573 26 883 0.999117
13 4 0.999996 27 0 1.000000
14 1368 0.998632

Table 2 - Occurrences of Multiplealfures

Number Probability Occurrences
2 0.00055100 551
3 0.00034300 343
4 0.00024200 2472
5 0.00007300 73
6 0.00003200 32
7 0.00001200 12
8 0.00000200 2
-11-

www.manharaa.com

Table 3 - Correlated &lures Between UX And UCI

UVA Versions
1 2 3 4 5 6 7 8 9
10 0 0 0 0 0 0 0 0 D
11 0 0 58 0 0 2 1 58 0
12 0 0 1 0 0 0o 71 1 0
13 0 0 0 0 0 0 0 0 D
14 0 0 28 0 0 3 71 26 0
15 0 0 0 0 0 0 0 0 D
16 0 0 0 0 0 1 0 0 D
17 2 0 95 0 0 0 1 29 0
UCI 18 0 0 2 0 0 1 0 0 0
\ersions 19 0 0 1 0 0 0 0 1 0
20 0 0 325 0 0 3 2 323 0
21 0 0 0 0 0 0 0 0 D
22 0 0 52 0 0 15 0 36 2
23 0 0 72 0 0 0 0 71 0
24 0 0 0 0 0 0 0 0 D
25 0 0 94 0 0 0 1 94 0
26 0 0 115 0 0 5 0 110 0
27 0 0 0 0 0 0 0 0 D

number of times ersions i and jdiled on the same inputn table 3, the nas are labeled with UClearsion

numbers and the columns with BWersion numbersThus, a non-zero table entry shthe number of

common &ilures &perienced by a U¥version and a UClearsion. Inthe preliminary analysis of common

faults, all were found to imolve versions from both schools.

5. MODEL OF INDEPENDENCE

Separate ersions of a program magif on the same inputven if they fail independently Indeed, if

they did not, their &ilures would be dependentVe base our probabilistic model for thigsperiment on the

statistical definition of independence:

-12 -

www.manaraa.com

Two events, A and B, are independent if the conditional probability of A occurrivendhat B
has occurred is the same as the probability of A occurring, and eisa.vThais pr(A|B) =
pr(A) and pr(B|A) = pr(B).Intuitively, A and B are independent if kméedge of the occurrence
of A in no way influences the occurrence of B, and vieesa.

The null typothesis that we wish to test is ded from this statement.

By examining the &ults (i.e. the flas in the program logic) that v been reealed by testing, we
could determine whether yaset of programs contain correlatexlfts. For this experiment we intend to do
that as part of a morexensve analysis. Havever, from an operational wepoint, it does not mattexhy
programs &il on the same input, it merely matters thatytde. Thus in &amining the kpothesis of
independence, wexamine theobserved behaior of the programs duringxecution. Inthis paperour
analysis of the ypothesis of independence is based on the results of the testsvindieba carried out

with no evaluation of the &ults in the programs’ sourcexte

For any gven program, we assume that the probability aifure on each test case is the safkis
is reasonable since prior to testing we had noMenige of the presence ofyafaults, and all test cases
were generated randomlyf the programsdil independentlythen, gven the indvidual probabilities of
failure p4, p2, ..., py for N versions, the probability that there are aitures on a gien test case is:
Po=(1-p)(1-p2)... (1= pn)

The probability thatxeactly one ersion fils on a gren test case is:

p. = PoP1 PoP2 . PoPn
! 1-pp 1-p 1-pn

Finally, the probability that more than one of the &tsions &ils on ay particular test case is:
Pmore: 1- PO_ Pl
If a total of n test cases argeeuted, let K be the number of timesoher more \ersions &il on the

same input dataUnder the fipothesis of independeraifures, the quantity K has a binomial distition

with parameteP .. Thus:

-13-

www.manaraa.com

g

P(K = X) = D(D(Pmore)X (1_ Pmore)n_x
m_ n!
Where ™ Xitn= !

Since the @lue of n is sdifciently laige [16], a normal approximation to this binomial digttibn

can be usedlf this is done, the quantity:

K = NP ore
(anore(l - Pmore))l/2

Z=

has a distribtion that is closely approximated by the standardized normal disbrib

For this experiment, our null ypothesis is that the ab® is a orrect model of the dataWe @an
estimate the quantiti e from the obsered probabilities ofdilure shavn in table 1. There were twenty
seven versions (i.e. N = 27), one million tests wekeauted (i.e. n = 1,000,000), and the number of tests in
which more than oneevsion &iled was 1255 (i.e. K = 1255)With these parameters, the statistic z has the
value 100.51.This is greater than 2.33 which is the 99% point in the the standard normalttriand
so we reject the nullypothesis with a confidencevkd of 99%. We conclude that the model does not hold.
However, dearly the only potential problem with the model is that it isvédrifrom the assumption of

independentdilures. Thuswe reject this assumption.

6. ANALYSISOF FAULTS

We cefine afault to be ag instance of programstein ary particular \ersion that causes thatrgion
to fail when that program xéis executed on some test caséhe \arious launch conditions thatyef be
computed are sometimes similar in their descriptidh.a programmer made the same mistak

implementing tw different ut similar launch conditions, we record that as tifferent faults.

A total of forty five faults were detected in the programrsions used in thisxperiment. The

numbers of dults found in the indidual versions is shen in Table 4. All of these fults hae been found

-14 -

www.manaraa.com

Table 4 - Faults Located In Eachévsion

\ersion Faults \&rsion Fults
1 1 15 0
2 0 16 2
3 4 17 2
4 0 18 1
5 0 19 1
6 3 20 2
7 1 21 2
8 2 22 3
9 2 23 2

10 0 24 1
11 1 25 3
12 2 26 7
13 1 27 0
14 2

and corrected.The correctie mde vas installed so that it could be selegii enabled and anxgensve
analysis of thedults has been undertak[17]. Many of the faults were unique to inddual versions kbt
several occurred in more thanewsion. V¢ will refer to the former asion-correlated and the latter as
correlated. The details of thedults are quite compteand a complete description isymad the scope of
this paper We include in this section a description ofotwion-correlated and twcorrelated &ults for
illustrative purposes. Recathat all the ersions used in thisxperiment were required to passothundred
tests as part of the acceptance proceduite faults described in this section all swed that acceptance

procedure.

The non-correlatedafilts that we describe here will be recognized as commonly occufiirey.are
subtle and important nonethelesBhe first vas an omission by the programmer of the assignment of a
value to a function for one path through the functidimis was not chead by agy of the compilers used in
this experiment. Theresult of eecuting that particular path through the functioasathat the function

returned whateer happened to be at the memory location allocated for the réEhdt.efect was therefore

-15-

www.manaraa.com

implementation dependent since some implementatiovey slinitialize storage.The efect was also time
dependent since the result obtainegsvacceptable on some calls and not on otharshe million test

cases, this particulaatlt caused theersion containing it toafil only 607 times.

The second non-correlateaidt was the use of the wrongpession to indean array. This occurred
in several versions. Theequired &pression s usually a single identifieand the &ult usually consisted

of using the wrong identifierA specific @ample is the folleing function call:

sam3pts(x[i], y[i], X[, y1i], x[k], y[K]);

The wrong inde expression has been used for the fourth paramétez correct function call is:

sam3pts(x[i], y[i], x{il, yli], x[k], y[K]);

This particular &ult caused the associategtsion to &il 1297 times during the one million tesle find it
surprising that majorafults such as this can occur in programs that are deitegs¥e manipulation of

arrays yet cause reladly few failures.

The correlateddults were, in generalaf more obscureThe first &le itvolves the comparison
of angles.In a number of cases, the specifications require that angles be computed and coAmpasidd.
all comparisons of real quantities, the limited precision real comparison funammowe used in these
cases. Théault was the assumption that comparison ofdbenes of angles is equalent to comparison of
the angles.With arbitrary precision this is a correct assumption of counséob this application it is not
since finite precision floating point arithmeticasv used and the precisionasv limited further for
comparison. Ofhe twenty seen versions written, four made this incorrect assumptibm.borderline
cases this assumptioraw/ Bilse, and this caused the associatdions to disagree with the gold program.
The number ofdilures attrilatable to thisdult varied from 71 to 206 in theavious \ersions although this

particular fwlt caused more than onersion to &il on the same test case on only eight occasions.

-16 -

www.manaraa.com

This fault cannot be attriied to the specification®Rather it vas caused by a fundamental lack of
understanding of numerical analysiBhe solution lies in a thorough analytic treatment of the arithmetic of

the machine wolved, and the algorithms used in the computation of the angles and their cosines.

The second correlatecdlt exkample ivolved an assumption about the angle subtended by three
points. Recalthat the program is required to process simulateddimensional radar datalhe data is
presented as points in a plang®essed in Euclidean coordinateBhe specifications for the problem
require the determination of whether three data points (simulated radar echos) lie on a straighisline.
possible to determine this byamining the angle subtended by the three poingsrdsg one of them as
the \ertex of the angle.If the angle is zerar the angle is 180 deees, the points lie on a straight line.
Figure 1A shws the general case, and Figures 1B and 1@ g two cases where all three points lie on a

straight line. The fault made by more than one programmer iothission of the second case.

Again, this fult cannot be attrilied to the specificationdt was caused by a lack of understanding

of geometry It is mot clear hav such a &ult could be pnented since basically it is attibable to an

Figure 1A

1 2 3 2 1 3
Figure 1B Figure 1C

-17 -

www.manaraa.com

incomplete case analysi$n fact, although the fundamentalult was the same in more than orersion,
the efects were dierent and caused thfent numbers ofdilures in the décted \ersions [18]. One
version failed 231 times because of th&uft and a second only 37 timeldowever, whenever the second
of the two failed, the first did alsoThe reason for the dédrence is the interaction between ttaslf and

the overall algorithms used by the &fent \ersions.

7. DISCUSSION

An important problem in performingkperiments at uwmersities is obtaining programmers with a
realistic experience leel. An experiment of this size ould be &tremely &pensve © undertale if
professional programmers were used as ¥permental subjectsOur use of students could be criticized
as being unrealisticub we point out that all of theevsions were written by graduate students or by seniors
with high grade point\erages, may of whom had returned to the wmisity after haing worked as
professional programmers, and all of whomuwd be entering the professional programmiraykfiorce at
high levels after graduation.Of the twenty seen programmers, twenty one had less than one year of
programming eperience outside their geee programs, three had between twd five years, and te had
more than fie years programmingxperience. W rote that the program written for thigperiment by the
most eperienced real-time programmer (who hawked at the Jet Propulsion Laboratory and Oak Ridge)

contained multipledults in common with other programs.

It could also be gued that our results are biased by thet that the xgerimental subjects came
from similar backgroundsThis in fact is not the caseThere is a considerableveisity of education and
experience in the students backgrountawever, the use of tw geographically separate wmisities also

contritutes to the diersity amongst the subjects.

The twenty seen versions ranged in length from 327 to 1004 lines of cod@s is much smaller

than most real-time systems which may include millions of lines of c8dee maw faults occur in the

-18-

www.manaraa.com

interconnection between components in gdamodular system, results of thigperiment relate only to
duplication of small pieces of a tgr system.It would be interesting to do a furthexperiment with a
larger problem.However, from a practical standpoint, economéctors vould male it unlikely that mag
projects could &brd complete duplication or triplication of the softse. Amore likely alternatie is that

the most critical functions will be identified and separated from the less critical functionsawdnd f
tolerance features applied only to those components whightia greatest potential for damage in case of

failure. Inthis respect, the problem used in thipe&riment is thenery realistic.

It might be agued that thisx@eriment does not reflect realistic programeitgpment in industry and
that one million test cases does not reflest/y\muchoperational time for programs of this typeln fact,
the acceptance test is the eglént of a \ery elaborate testing process for production programs of this type.
Each of our test cases representsiamsual’ event seen by the radaMost of the time the radar echoes
will be identical from one scan to thextavith only an occasional change due to the entry of an object into
the field of viev. Producing realistic unusualents to test a production tracking program is clearly an

expensve windertaking and we feel that avhundred suchwents would indeed be a realistic number

One million test cases (g@al hundred hours of computer time persion) corresponds to dealing
with one million unusual cases during production usepractice once ain, these one millionvents will
be separated by a muchdar number of xeecutions for usualwvents. Ifthe program is»ecuted once per
second and unusualents occur eery ten minutes, then one million tests correspond to about twenty years

of operational use.

8. CONCLUSIONS

For the particular problem that ag programmed for thisxperiment, we conclude that the
assumption of independence of errors that is fundamental to the analysiefidi\programmingloes

not hold. Using a probabilistic model based on independence, our results indicate that the model has to be

-19-

www.manaraa.com

rejected at the 99% confidencede

It is important to understand the meaning of this statentérgt, it is conditionabn the application
that we used. The result may or may noktend to other programs, we do not wnoOther experiments
must be carried out taather data similar to ours in order to be able tovdyeneral conclusions. Haever,
the result does suggest that the use ofeMion programming in crucial systems, wheagufe could

endanger humanviés for exkample, should be deferred until furtheidence is @ailable.

A second point is that our result does not mean thagidion programming does nobwk or should
never be used. Itmeans that the reliability of an Nession systenmay not be as high as theory predicts
under the assumption of independentethe implementation issues can be resdifor a particular N-
version system, the required reliability might be aehikby using a lager \alue for N using the coincident

errors model [7] to predict reliability

Based on a preliminary analysis of tlailfs in the programs, weeafound that approximately one
half of the total softare fiults found imolved two or more programs.This is surprisingly high and implies
that either programmers mak hrge number of similaralults or dternatvely, that the commonallts are
more likely to remain after delyging and testingSeveral alternatve hypotheses are possible and need to
be further &plored. Onas that certain parts of gproblem are just more di€ult than others and will lead
to the samedults by diferent programmersThus the &ult distritution is more an artifct of the problem
itself than the programmeand thus isnot random. Anothepossible lgpothesis is that unique (random)
faults tend to be those mostdiy to be caught by a compiler or by testingommon &ults may reflect
inherently dificult semantic aspects of the problem or typical human misconceptions which are not easily

detected through standardrification and &lidation eforts.

A final possibility is that commonatlts may reflect flas in the requirements specification
document. W do not think this is the case in thigmeriment since great care went into its preparation and

the-requirements.specification had beerudgkd through use in an earlieqperiment. Furthermorehe

-20-

www.manaraa.com

particular commondgults made in thisxperiment are quite subtlén our opinion, none wolve ambiguity,

inconsisteny, or deficieng in the specification.

Given that commondults (as shen by this and otherxperiments) are possible and perhapane
likely in separately deloped multiple ersions of a softare system, then relying on random chance to get
diversity in programs and eliminate desigults may not be &dfctive. Howeve, this does not mean that
diversity is not a possible solution to the scite fult tolerance problemWhat it does imply is that
further research on commoauits may be usefulHardware designers do not rely on simple redunglanc
independently generatedvdise designs to get rid of common desigults. Insteadhey use sophisticated
techniques to determine commoailfire modes and systematically alter their designs to attempt to
eliminate commondilure modes or to minimize their probabilitiferhaps we need egalent techniques
for software. Unfortunatelythis will not be simple bt perhaps a simple solution just does nastefor

what is undoubtedly aevy difficult problem.

9. ACKNOWLEDGEMENTS

It is a pleasure to ackmtedge the students who wrote thersions that were tested in this
experiment; PAmmann, C. Finch, N. Fitzgerald, M. Heiss, D. Irwin, L. Lauterbach, S. Samantaft3, W
P. Wilson from U\A, and R. Bavles, D. Duong, PHiggins, A. Milne, S. Musgnze, T. Nguyen, J. Peck,.P
Ritter, R. Sagent, R. Schmaltz, A. Schoonlem, T. Shimeall, G. Stoermerd. Stolzy, D. Taback, J.
Thomas, C. Thompson, L. &g from UCI. We ae also pleased to ackmlzdge the Academic Computer
Center at the Umersity of Virginia, the AIRLAB fcility and the Central Computer Comyplat NASA
Langley Research Center for prilling computer time to alie the programs to be testedduch of the
design of the xperiment is due to Lois St.Jean, and Susan Brilliant andl Ammann were responsible for
much of the testing aeities. e ae indebted to Janet Dunham and Earl Migneault fowalig us to
learn from the xperience gined in an earlierarsion of this gperiment, and to Jo Mahon&r comments

on-our.statistical-analysiskhis-work was supported in part byASA grant number NG1-242, and in part

-21-

www.manaraa.com

by a MICRO grant cofunded by the Uwersity of California and Hughes Aircraft CompanFnally, none
of this work would hare been possible and this paper could notehkeen written without thexeellent

facilities provided by the ARR and CSNET computer netwks.

-22.

www.manharaa.com

APPENDIX

This is the requirements specification document used in xpisrienent. Itis the \ersion used at

UVA. Only minor changes to names and document references were made fenstbe used at UCI.

LAUNCH INTECEPTOR PROGRAM - REQJUIREMENTS SPECIFICAION

INTRODUCTION

As part of a Rpothetical anti-ballistic missile system, you will write a parameterlesscaP
procedure called DECIDEIt will generate a signal which determines whether an interceptor should be
launched based upon input radar tracking informatibinis radar tracking information isvalable at the
instant the procedure is calleth the folloving sections, the names of inpudriables are delimited as

'name’. Terms delimited as #term# are defined in the glossary at the end of this document.

Values of quantities which are parameters of the problem aredpband will determine which
combination of the seral possible #Launch Interceptor Conditiong#IC’s) are relevant to the
immediate situation.The interceptor launchutton is normally considered loe#t; only if all releant

combinations of launch conditions are met will the launch-unlock signal be issued.

Your procedure will determine whether each of fifteen &l{8’'true for an input set of up to 100
#planar data points# representing radar echdéeg LIC's ae specified in the Functional Requirements
section of this documentlo indicate which LICS ae satisfied by the set of points, the fifteen elements of a
#Conditions Met ¥ctor# (CMV) will be assigned booleaalwves true ordise; eaclelement of the CMV

corresponds to one LIC.

-23-

www.manaraa.com

Another input, the #Logical Connector Matrix# (LCM), defines whichviddial LIC’'s rmust be
considered jointly in someay. The LCM is a 15x15 symmetric #matrix# with elemerdtued ANDD,
ORR, or NOUSED. CMV elements are combined as indicated by the LCM, and the resulting boolean
values are stored in the #afiagonal elements# of the #Preliminary Unlocking Matrix# (PUM), a 15x15
symmetric #matrix#.Thus, the #dfdiagonal elements# of the PUM are an output of your procedure.
PUM'’s #diagonal elements# are an input to your procedure and represent whishedtl@lly matter in
this particular launch determinatioftach #diagonal element# of the PUM indicates @ combine the
off-diagonal \alues in the same PUMwoto form the corresponding element of the #Final Unlocking
Vector# (FUV), a 15-element #etor#. If,and only if, all the &lues in the FUV are true, should the

launch-unlock signal be generated.

No actual reading or writing to phical I/O deices will tale dace. Insteadjnputs to your
procedure will be ilable as global ariables, and outputs from your procedure will be placed in other

global variables.

-24-

www.manaraa.com

HARDWARE AND SOFTWARE SUPPORT

Hardware

Your procedure is to be written using, and musicete on, the PR1IME 750 equipment of the

Academic Computing Center of the Werisity of Virginia.

Software

The only softvare fcilities you may use to prepare your procedure are:

(1) PRIMOSoperating system

(2) Software Dols subsystem (optional)

(3) Any text editor available on the abee s/stems

(4) Hull V-Mode Rascal compiler

References

(1) PRIME User’s Guide, Revision 19.0, Third Edition, by Anne Watenaude. Publishdsy PR1IME

ComputerInc., Framingham, Massachusetts, 1982.

(2) PRIMOS Commands Reference Guide, by Alice Landy Published by PR1IME Computemnc.,

Framingham, Massachusetts, 1981.

(3) Software Tools Subsystem User’s Guide, by T. Allen Akin, et.al., Gedagia Institute of €chnology

Atlanta, Geogia, 1982.

-25.-

www.manharaa.com

(4) The Hull V-Mode Pascal Compiler, User Manual Version 3.3, by Barry Cornelius, lan Thomas,

University of Hull, Hull, England, 1982.

(5) Pascal User Manual and Report, Second Edition, by Kathleen Jensen and NiklausthW

Published by Springeverlag, Nev York, 1974,

- 26-

www.manharaa.com

FUNCTIONAL REQUIREMENTS

All communication with softare which calls your procedure is to be accomplished through the

global \ariables and constant defined in this section.

Constant

Available to your procedure is thalue of the global constant, PI, representing the number of radians

in 180 dgrees.

Input Variables

The \alues of the folling global \ariables areailable to your procedure:

NUMPOINTS

XY

PARAMETERS

LCM

PUM (diagonal elements)

Thenumber of #planar data points#.

Parallel arrays containing the coordinates of data points.

Recordholding parameters for LIG!

Logical Connector Matrix.

Preliminary Unlocking Matrix.

-27-

www.manharaa.com

Output Variables

The walues of the follwing global \ariables are to be set by your procedure:

PUM (off-diagonal elements) Preliminary Unlocking Matrix.
CMV ConditionsMet Vector

FUV FinalUnlocking \ectot

LAUNCH Finallaunch/no launch decision.

Global Declarations

The global declarations @ been made as folles:

const

Pl =3.1415926535;

type
POINTRANGE = 1..100;
LICRANGE =1..15;
NPOINTS =2..100;
NPTYPE =3..100;
CONNECTORS = (NOUSED,ORR,ANDD);
NUMQUADS =1..3;
COORDINATE = aray[POINTRANGE] of real;
CMATRIX = array[LICRANGE,LICRANGE] of CONNECODRS;
BMATRIX = array[LICRANGE,LICRANGE] of boolean;
VECTOR =array[LICRANGE] of boolean;

COMPTYPE =(LT,EQ,GT);

var

-28-

www.manharaa.com

X : COORDINATE; {X coordinates of data points}
Y : COORDINATE; {Y coordinates of data points}

NUMPOINTS :NPOINTS; {Numberof data points}

PARAMETERS : record
LENGTH1 : real; {LengthinLICs 1, 8, 13}
RADIUS1 :real; {Radiusin LICs 2, 9, 14}
EPSILON :real; {Deviation from 'PI' in LICs 3, 10}
AREAL :real; {AreainLICs 4, 11, 15}
Q_PTS NPOINTS; {No.of #consecutie# points in LIC 5}
QUADS :NUMQUADS; {No.of quadrants in LIC 5}
DIST :real; {Distancen LIC 7}
N_PTS :NPTYPE; {No.of #consecutie# pts. in LIC 7}
K_PTS :POINTRANGE; {No. of int. pts. in LICs 8, 13}
A_PTS :POINTRANGE; {No. of int. pts. in LICs 9, 14}
B_PTS :POINTRANGE; {No. of int. pts. in LICs 9, 14}
C_PTS :POINTRANGE; {No. of int. pts. in LIC 10}
D_PTS :POINTRANGE; {No. of int. pts. in LIC 10}
E_PTS :POINTRANGE; {No. of int. pts. in LICs 11, 15}
F_PTS POINTRANGE; {No. of int. pts. in LICs 11, 15}
G_PTS POINTRANGE; {No. of int. pts. in LIC 12}
LENGTH2 : real; {Maximum length in LIC 13}
RADIUS2 :real; {Maximum radius in LIC 14}
AREA2 :real {Maximumarea in LIC 15}

end; {ofrecord ARRAMETERS}

LCM : CMATRIX; {Logical Connector Matrix}
PUM :BMATRIX; {Preliminary Unlocking Matrix}
CMV :VECTOR; {ConditionsMet Vector}

FUV :VECTOR; {FinalUnlocking \kctor}

LAUNCH :boolean; {Decisiontaunch or No Launch}

function REALCOMRRE (A,B : real) : COMPTYPE;

{compares real numbers -- see Nonfunctional Requirements}

-29.

www.manharaa.com

Required Computations

It can be assumed that all input data and parameters that are measured in some form of units use the
same, consistent units:or example, all lengths are measured in the same units that are used to define the

planar space from which the input data coniBserefore, no unit caersion is necessary

Given the parameteralues in the global record ARAMETERS’, the procedure DECIDE must
evduate each of the #Launch Interceptor Conditions# (LICs) described fmiohe set of 'NUMPOINTS'

points:

(X[1],Y[1]) ,-..., (XINUMPOINTS],Y[NUMPOINTS])

where 2<=NUMPOINTS <= 100

The #Conditions Met &ttor# (CMV) should be set according to the results of these calculations, i.e. the

global array element CMVJi] should be set to true if and only if the ith LIC is met.

The Launch Interceptor Conditions (LIC) are defined asviclio

(1) Thereexsts at least one set of éwfconsecutie# data points that are a distance greater than the

length, 'LENGTH1’, apart.

(0<=LENGTH1)

(2) Thereexists at least one set of three #consee#itdata points that cannot all be contained within or

on a circle of radius 'RADIUS1".

(0 <= RADIUS1)

-30-

www.manaraa.com

(3) Thereexists at least one set of three #conseetitdata points which form an #angle# such that:

angle < ('PI' - 'EPSILON’)

or

angle > (PI' + 'EPSILON’)

The second of the three #consewsitipoints is alvays the #ertex# of the #angle#If either the
first point or the last point (or both) coincides with ther&#, the #angle# is undefined and the

LIC is not satisfied by those three points.

(0 <=EPSILON < PI)

(4) Thereexists at least one set of three #conseetitdata points that are thestices of a triangle with

area greater than 'AREAL’.

(0 <= AREA1)

(5) Thereexists at least one set of 'Q_PTS’ #conse@#tidata points that lie in more than U3 DS’
#quadrants#. Wherthere is ambiguity as to which #quadrant# contains/engioint, priority of
decision will be by #quadrant# numbpee., I, Il, lll, IV. For example, the data point (0,0) is in
guadrant I, the point (-1,0) is in quadrant Il, the point (0,-l) is in quadrant lll, the point (0,1) is in

guadrant | and the point (1,0) is in quadrant I.

(2 <= Q_PTS <= NUMPOINTS), (1 <= QUADS <= 3)

(6) Thereexists at least one set of awiconsecutie# data points, (X[i],Y[i]) and (X[j],Y[j]), such that

X[j1- X[(]<0. (wherei=j-1)

-31-

www.manaraa.com

(7) Thereexsts at least one set of 'N_PTS’ #conseetidata points such that at least one of the
points lies a distance greater than 'DIST’ from the line joining the first and last of these 'N_PTS’
points. Ifthe first and last points of these 'N_PTS’ are identical, then the calculated distance to
compare with 'DIST" will be the distance from the coincident point to all other points of the

'N_PTS’ #consecutie# points. Thecondition is not met when 'NUMPOINTS’ < 3.

(3<=N_PTS <= NUMPOINTS), (0<=DIST)

(8) Thereexists at least one set of awdata points separated byaetly 'K_PTS’ #consecuie#
intervening points that are a distance greater than the length, 'LENGTH1’, djtertcondition is

not met when 'NUMPOINTS' < 3.

1 <=K_PTS <= {NUMPOINTS - 2}

(9) Thereexists at least one set of three data points separatexanylye’A PTS' and 'B_PTS’
#consecutie# interening points, respeggly, that cannot be contained within or on a circle of

#radius# 'RADIUS1'. Thecondition is not met when 'NUMPOINTS' <5 .

1<=A_PTS , 1<=B_PTS

A PTS + B _PTS <= NUMPOINTS - 3

(10) Thereexists at least one set of three data points separatexanylye’C_PTS’ and 'D_PTS’

#consecutie# intervening points, respegtly, that form an #angle# such that:

angle < ('PI' - 'EPSILON’)

or

angle > (PI' + 'EPSILON’)

-32-

www.manaraa.com

The second point of the set of three pointsigagd the #ertex# of the #angle#lIf either the first
point or the last point (or both) coincide with theettex#, the #angle# is undefined and the LIC is

not satisfied by those three pointWhen 'NUMPOINTS’ < 5, the condition is not met.

1<=C_PTS , 1<=D_PTS

C_PTS + D _PTS <= NUMPOINTS - 3

(11) Thereexists at least one set of three data points separatekdnglye’E_PTS' and 'F_PTS’
#consecutie# intervening points, respewtly, that are the ertices of a triangle with area greater

than '"AREA1’. The condition is not met when 'NUMPOINTS’ < 5.

1<=E PTS , Ik=F_PTS

E PTS + F_PTS <= NUMPOINTS - 3

12) Thereexsts at least one set of amdata points, (X[il,Y[i]) and (X[],Y[]]), separated byxactly
'G_PTS'’ #consecuiet internvening points, such that X[j] - X[i] < 0.(where i <j) The condition is

not met when 'NUMPOINTS' < 3.

1 <=G_PTS <= {NUMPOINTS - 2}

13) Thereexists at least one set of emdata points, separated byaetly 'K_PTS’ #consecuie#
intervening points, which are a distance greater than the length, 'LENGTHY’, dpaaddition,
there aists at least one set of dwdata points (which can be the same ofedént from the tw data
points just mentioned), separated byaaly 'K_PTS’ #consecute# intervening points, that are a

distance less than the length, 'LENGTH2’, apd@utth parts must be true for the LIC to be trddwe

-33-

www.manaraa.com

14)

15)

condition is not met when 'NUMPOINTS’ < 3.

(0<=LENGTH2)

Thereexists at least one set of three data points, separatecdnylye’A PTS’ and 'B_PTS’
#consecutie# intervening points, respeegly, that cannot be contained within or on a circle of
#radius# 'RADIUSY1'. Inaddition, theredsts at least one set of three data points (which can be the
same or dierent from the three data points just mentioned) separatecadnylye’A PTS’ and
'B_PTS’ #consecutie# interening points, respeesgly, that can be contained in or on a circle of
#radius# 'RADIUS2’. Bottparts must be true for the LIC to be trughe condition is not met when

'NUMPOINTS' <5.

(0 <= RADIUS2)

Thereexists at least one set of three data points, separatedkdnflye’E_ PTS' and 'F_PTS’
#consecutie# intenening points, respegtly, that are the ertices of a triangle with area greater
than 'AREAL’. In addition, there)ast three data points (which can be the same terdift from the
three data points just mentioned) separated kgcty 'E_PTS and 'F_PTS’ #consecusit
intervening points, respeetly, that are the ertices of a triangle with area less than 'AREABOth

parts must be true for the LIC to be truéhe condition is not met when 'NUMPOINTS’ <5 .

(0 <= AREA2)

The #Conditions Met &tctor# (CMV) can ne@ be wsed in conjunction with the #Logical Connector

Matrix# (LCM) to form the #dfdiagonal elements# of the #Preliminary Unlocking Matrix# (PUNhe

www.manaraa.com

entries in the LCM represent the logical connectors to be used between pairs of LICs to determine the
corresponding entry in the PUM, i.e. LCM][i,j] represents the boolean operator to be applied to CMV[i] and
CMVI[j]. PUM[i,j] is set according to the result of this operatitfil.CM([i,j] is NO TUSED, then PUM[i,j]

should be set to trudf LCM[i,j] is ANDD, PUM][i,j] should be set to true only if (CMVJ[i] AND CMVI[j])

is true. If LCM][i,j] is ORR, PUM]i,j] should be set to true if (CMV[i] OR CMVJj]) is true(Note that the

LCM is symmetric, i.e. LCM[i,j]=LCM]j,i] for all i and j).

Example

Assume that the gén #Logical Connector Matrix# is as shio belav:

Logical Connector Matrix (LCM)

LIC | 2 3 4 5 . 15
I ANDD ANDD ORR ANDD NOTUSED .. NOUSED
2 ANDD ANDD ORR ORR NOTUSED ... NQUSED
3 ORR ORR ANDD ANDD NOTUSED .. NOUSED
4 ANDD ORR ANDD ANDD NOTUSED .. NQUSED
5 NOTUSED NOUSED NOUSED NOUSED NOUSED .. NOJUSED
15 NOTUSED NOTUSED NOUSED NOUSED NOUSED .. NQUSED

Also assume that the entries in the CMWéndeen computed as describedjigg the follaving results:

Conditions Met ¥éctor (CMV)

Condition \alue

false
true
true
true
false

abr wiNPE

15 false

-35-

www.manaraa.com

The folloving PUM is generated:

Preliminary Unlocking Matrix (PUM)

LIC 1 2 3 4 5 15
1 * false true dise true true
2 false * true true true true
3 true true * true true true
4 false true true * true true
5 true true true true * true
15 true true true true true *

* Diagonal elements are input, not computabligs.

Explanation of selected PUM entries:

(1) PUM[1,2]is false because LCM[1,2] is ANDD, and at least one of CMV[1] and CMV[&Isef

(2) PUMIL,3]is true because LCM[1,3] is ORR, and at least one of CMV[1] and CMV][3] is true.

(3) PUMI2,3]is true because LCM[2,3] is ORR, and at least one of CMV[2] and CMV|3] is true.

(4) PUM[3,4]is true because LCM[3,4] is ANDD, and both CMV[3] and CMV[4] are true.

(5) PUMI1,5]is true because LCM[1,5] is NQUSED.

The #Final Unlocking ¥ctor# (FUV) is generated from the #Preliminary Unlocking MatriX#e

input #diagonal elements# of the PUM indicate whether the corresponding LIC is to be considered as a

factor in signaling interceptor launctrUV[i] should be set to true if PUM][i,i] isafse (indicating that the

associated LIC should not hold back launch) or if all elements in PN axe true.

Example

-36-

www.manaraa.com

Assume that the PUM moappears as folles:

Preliminary Unlocking Matrix (PUM)

LIC 1 2 3 4 5 15
1 true false true dlse true true
2 false filse true true true true
3 true true true true true true
4 false true true false true true
5 true true true true false true
15 true true true true true false

The FUV generated is:

Final Unlocking \éctor (FUV)

Condition \alue
1 false

2 true

3 true

4 true

5 true

15 true

Explanation of selected FUV entries:

(1) FUV[1]is false because PUM[1,1] is trueti’UM[1,2] and PUM[1,4] areafse.

(2) FUV[2]is true because PUM|[2,2] ialfe.

(3) FUV[3]is true because PUMJ3,i] is true for all i, 1 <=1 <= 15.

-37-

www.manharaa.com

The final launch/no launch decision is based on the. Fthé decision to launch requires that all
elements in the FUV be true, i.e. UNCH should be set to true if and only if FUV[i] is true for all i, 1 <=i

<= 15. For the kample, LAJNCH is false because FUV[1] ialfe.

-38-

www.manharaa.com

@)

)

®3)

(4)

®)

(6)

@)

NONFUNCTIONAL REQUIREMENTS

The functional requirements are to be implemented by a parametedssal Procedure named
DECIDE. Itwill perform no input or output, because the calling program wilvige input data

through global ariables. Lilewise, DECIDE should store its results in globatiables.

Wheneer real numbers must be compared within the procedure DECIDE, that comparison should
be made with a fed amount of precisionThe program which calls DECIDE will pvae a
function called REALCOMRRE.. (Sedfunction header in declarations on page Bhjis function
compares tw real numbers, A and B, with respect to the six most significant digits.
REALCOMPARE returns T if A<B ,EQifA=B,or GT if A>B . DECIDE should call this

function for all comparisons of real numbers.

Information contained in the globalaviables when the subroutine is called will remaaids
throughout the xecution of the procedureThere are no feedback or time seridea$ during a

call to DECIDE, or from multiple calls to DECIDE.

Do not include input error checkingdssume that the calling program insures inputs are complete

and within the specified range.

Nodouble precision or complevariables should be used.

Thereare no constraints on memory space xecetion time, it eficient, well-structured code

with descriptve mmments is preferred.

In writing the subroutine, do not useydianguage-dependent softwe tools other than the Hull V

Pascal compiler

-39-

www.manaraa.com

www.manharaa.com

ol LA ZI‘J‘ b o

GLOSSARY

angle
An angle is formed by tavrays which share a common endpoint calleérde¢. If one ray is rotated
about the ertex until it coincides with the other rathe amount of rotation required is the measure of
the angle.Three points can be used to determine an angle byirdra ray from the second point
through the first point and another ray from the second point through the third Noi.that
different angles are described according to whether the ray is rotated clockwise or counterclockwise.

Either can be used in this problem because of thethe LICS ae defined.

CMV
(Conditions Met ¥ctor) The CMV is a boolean &ctor whose elements J&ea a me-to-one
correspondence with the launch interceptor conditidhshe radar tracking data satisfy a certain

LIC, then the corresponding element of the CMV is to be set to true.

consecutie
Two points are consecut if they are adjacent in the input dataators X and Y Thus (X[i],Y[i])

and (X[i+1],Y[i+1]) are adjacent.

diagonal element
Consider a matrix M, with n ves and n columnsThe diagonal elements of the matrix are M[i,i] ,

where i=1,..,n.

FUV

(Final Unlocking \éctor) TheFUV is a boolean ector which is the basis for deciding whether to

-41 -

www.manaraa.com

launch an interceptodf all elements of the FUV are true, a launch should occur

LCM
(Logical Connector Matrix)The LCM describes Woindividual LIC’s should be logically combined.
For example, the &lue of LCM]i,j] indicates whether LIC #i should combine with LIC # by the

logical AND , OR, or not at all.

LIC
(Launch Interceptor Conditionlf radar tracking dataxibit a certain combination of characteristics,

then an interceptor should be launch&gch characteristic is an LIC.

matrix

For purposes of this problem, a matrix can be considered to be-ditmensional array

off-diagonal element

An off-diagonal element of a matrix isyaalement which is not a diagonal element.

planar data points

Planar data points are points that are all located within the same plane.

PUM
(Preliminary Unlocking Matrix) Every element of the boolean PUM corresponds to an element of
the LCM. If the logical connection dictated by the LCM elementegithe \alue "true", the

corresponding PUM element is to be set to true.

guadrant
The x and y ags of the Cartesian coordinate systewmiddi a plane into four areas called quadrants.

They are labeled 1, II, Ill, IV begnning with the area where both coordinates are pesnd

-42-

www.manaraa.com

numbering counterclockwise.

radius
The length of the radius of a circle is the distance from the center of the circhg poianon the

circle’s drcumference.

ray

A ray is a straight line thak&ends from a point.

vector

For purposes of this problem, &cetor may be considered to be a one-dimensional.array

vertex
When two rays originate from a common point to form an angle, the point of their origination is

called the ertex of that angle.

www.manharaa.com

@)

)

®3)

(4)

®)

(6)

()

REFERENCES

L. Chen and A. Rizienis, ‘N-version programming:A fault-tolerance approach to reliability of
software operatiofi, Digest of Papers FTCS-8: Eighth Annual International Conference on Fault

Tolerant Computing, Toulouse, France, pp. 3-9, June 1978.

C.V. Ramamoortly, Y.R. Mok, E.B. Bastani, G.H. Chin, and K. SuzuKiApplication of a
methodology for the delopment and alidation of reliable process control sofire; |EEE Trans.

on Software Engineering, vol. SE-7, no. 6, pp. 537-555, Mal981.

J.RJ. Kelly, “Specification of Rult-Tolerant Multi-\ersion Softvare: ExperimentaStudies of a

Design Dversity ApproacH, Ph.D. dissertation, Umersity of California, Los Angeles, 1982.

J.RJ. Kelly and A. Asizienis, ‘A specification-oriented multiersion softvare experiment, Digest
of Papers FTCS13: Thirteenth International Conference on Fault Tolerant Computing, Milan,

Italy, pp. 120-125, June 1983.

T. Anderson and.R. Lee, Fault Tolerance: Principles and Practice, Prentice Hall International,

1981.

B. Bonnett, ‘Software in safety and security critical systenipanel presentation;OMPCON 84,
Washington D.C., Sept. 1984. (transcription of the panel sessalatde from Albert W Friend,

ELEX 70343, MV ELEX, Washington, D.C. 20363).

D.E.Eckhardt and L.D. LeeA theoretical basis for the analysis of redundant softveubject to
coincident error§, NASA Technical Memorandum 86369,AS8A Langley Research Center

Hampton, \fginia, January 1985.

www.manaraa.com

(8) D.J.Martin, “Dissimilar software in high intgrity applications in flight controls, Software for

Avionics, AGARD Conference Proceedings, No. 330, pp. 36-1 to 36-9, January 1983.

(9) J.R.Taylor, in “Letter from the editgf ACM Software Engineering Notes, vol. 6, no. 1, pp. 1-2,

January 1981.

(10) U.Voges, FFetsch, and L. GmeingfUse of microprocessors in a safety-oriented reactor shut-
down systent, in E. Lauber and J. Moltoft (eds.Reliability in Electrical and Electronic

Components and Systems, North-Holland, pp.. 493-497, 1982.

(11) G.Dahll and J. Lahti,’An investigation of methods for production anerification of highly
reliable softvare} in L. Lauber (ed.) Safety of Computer Control Systems (Proceedings of

SAFECOMP ' 79), Pegamon Press, pp. 89-94, 1980.

(12) L. Gmeiner and U. dges, “Software dversity in reactor protection systems: Axperiment;
Safety of Computer Control Systems (Proceedings of SAFECOMP ’ 79), Pegamon Press, pp. 75-79,

1980.

(13) A. Avizienis and J.B. Kelly, “Fault tolerance by designwdrsity: concepts andxperiments;

|EEE Computer, vol. 17, no. 8, August 1984.

(14) J.F Wakerly, “Microcomputer reliability imprgement using triple-modular redundatic

Proceedings of the IEEE, vol. 64, no. 6, pp. 889-895, June 1976.

(15) PM. Nagel and J.A. Skran, “Software Reliability: Repetitve Run Experimentation and
Modeling; prepared for National Aeronautics and Space Administration at Boeing Computer

Services Compan Seattle, WAshington, 1982.

-45-

www.manaraa.com

(16) M.S.Raff, “On approximating the point binomial,J. Amer. Satist. Ass,, vol 51, 1956.

(17) S.SBrilliant, “Analysis of &ults in a multi-ersion softvare experiment; M .S. Thesis, Uwersity

of Virginia, May 1985.

(18) L.D. St.Jean, ‘Testing ‘ersion independence in multession programming, M .S. Thesis,

University of Virginia, January 1985.

- 46 -
www.manaraa.com

